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The restrictive assumptions imposed by the traditional methods of aggrega-
tion prevented so far a sound analysis of complex system of feedback between
microeconomic variables and macroeconomic outcomes. This issue seems to be
crucial in macroeconomic modelling, in particular for the analysis of financial
fragility, as conceived in the Keynesian and New Keynesian literature. In the
present paper a statistical mechanics aggregation method is applied to a finan-
cial fragility model. The result is a consistent representation of the economic
system that considers the heterogeneity of firms, their interactive behaviour and
the feedback effects between micro, meso and macro level. In this approach, the
impact of micro financial variables can be analytically assessed. The whole dyna-
mics is described by a system of dynamic equations that well mimics the
evolution of a numerically solved agent based model with the same features.
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The Representative Agent (RA) assumption is a methodolo-
gical shortcut to bypass the problem of dimensionality which arises
in heterogeneous agents model. The reasons for dissatisfaction
with the RA assumption are well known and have been forcefully

1. The authors gratefully acknowledge the insightful suggestions of an anonymous referee
which have improved the quality of the paper and led it to the present version.
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discussed in Kirman (1992) and Keen (2011). The efforts to over-
come the limits of the exact aggregation (Gorman, 1953) led to
methods, such as Lewbel (1992), that are still too restrictive in their
basic assumptions to realistically depict an economic system.2

As a consequence of the dissatisfaction with the RA approach, a
few analytical frameworks have been developed to cope with the
dimensionality problem mentioned above. One of the most promi-
sing methods has been introduced by Duncan Foley and Masanao
Aoki who borrowed from statistical mechanics the concept of
mean-field interaction and imported it into economics.3

In the mean-field interaction approach, agents are classified
into clusters or sub-systems according to their state with respect to
one particular feature (the so-called micro-state, e.g. the level of
production for a firm on a scale of production levels). This cluste-
ring determines the characteristics and the evolution of the
aggregate (the macro-state, e.g. the total level of output).4 The
focus is not on the single agent, but on the number or fraction of
agents occupying a certain state of a state-space at a certain time.
These numbers or fractions are governed by a stochastic law, that
also defines the functional of the probability distributions of aggre-
gate variables and, if they exist, their equilibrium distributions.
The stochastic aggregation is then implemented through master
equation techniques, that allow for a description of the dynamics
of probability flows among states on a space. These probability
flows are originated by the changes in the conditions of agents and
determine the aggregate outcomes.5

This paper presents an application of mean-field interaction
and master equation on a model in which firms are heterogeneous
in terms of financial fragility, along the lines of Di Guilmi et al.
(2010). The degree of financial fragility, modelled à la Greenwald
and Stiglitz (1993) (GS henceforth), is the clustering device to clas-
sify firms and to develop the analytical solution of the model. The

2. For a review on aggregation methods see Gallegati et al. (2006) and Di Guilmi (2008).
3. See Foley (1994); Aoki (1996, 2002); Aoki and Yoshikawa (2006). Further developments of
these contributions are: Landini and Uberti (2008), Di Guilmi (2008) and Di Guilmi et al. (2011).
4. An early economic application of mean-field theory is Brock and Durlauf (2001).
5. Other applications of master equation in economics, besides the works cited above, can be
found in Weidlich and Braun (1992) and Garibaldi and Scalas (2010) among others. Alfarano
et al. (2008) and Alfarano and Milakovic (2009) offers a further contribution, in particular with
reference to agent based pricing models.
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analytical approximation mimics well the dynamics of a system
with a higher order of heterogeneity and provides insights on the
interactions among the micro-units in the system. The analytical
solution to agent based models is the result of a functional-inferen-
tial method which identifies the most probable path of the system
dynamics. The method considers the heterogeneity, representing a
large number of agents, and the interaction among them, which
originates fluctuations of the macroeconomic variables about a
deterministic trend. Individual direct interaction is replaced by
indirect mean-field interaction between sub-systems, expressed in
terms of the transition rates of the master equations. In particular,
according to the local approximation method detailed below, an
explicit solution for the master equation is obtained. It yields the
analytical identification of an ordinary differential equation,
which describes the dynamics of the system trend, and a stochastic
differential equation, which quantifies the dynamics of the proba-
bility distribution of fluctuations. 

The successful application of the aggregation method can be a
contribution toward the adoption of a realistic new economic
paradigm in the direction suggested by Aoki. As shown in the last
section, in fact, the numerical simulation of a similar agent based
structure is well reproduced by the stochastic dynamics generated
by the master equation.6

The structure of the paper is the following: first, we specify the
hypotheses for the stochastic structure of the system (section 1)
and for the firms that compose it (section 2). In section 3, we
develop the framework, setting the dynamical instruments needed
for aggregation, and solve the model, determining the two equa-
tions that drive production trend and business fluctuations.
Section 4 presents a further result coming from the solution of the
master equation, stressing the relevance of indirect interaction
among agents in shaping macroeconomic outcomes. In section 5,
some results of computer simulations are presented. Section 6
concludes.

6. On this point see also Chiarella and Di Guilmi (2011).
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1. Stochastic structure

The economy is populated by a fixed number N of firms, each
indexed by the subscript i. Agents clusters into micro-states accor-
ding to a quantifiable individual variable. Two micro-states are
defined. State 0 denotes agents characterised by a level of a chosen
feature above (or equal to) a certain threshold and 1 labels the state
of the rest of the population. In each cluster, therefore, there will
be a certain number (the so-called occupation number) of agents.
The occupation number of cluster j is Nj, j = 0,1. The occupation
numbers (N0(t), N1(t)) define the macro-state of the system. The
fraction of firms in micro-state j is nj = Nj / N where N0(t) + N1(t).
For the sake of tractability, within each cluster individual levels of
a certain variable are approximated by their mean-field values, i.e.
a specific statistic of the distribution of the variable itself.7 There-
fore, within each cluster heterogeneous agents (characterised by
different individual levels) are replaced with an homogeneous
agent characterised by this statistic (mean field approximation).

The notation adopted uses a continuous time reference because
it is more appropriate for complex systems settings, as remarked
among others by Hinich et al. (2006). Continuous time functionals
are appropriate at system level if we assume that the density of
discrete points is large enough within a sufficiently small reference
interval of time. This is due to the so-called principle of limiting
density of discrete points, introduced by Jaynes (1957) to match
Shannon's entropy with continuous distributions in information
and probability theory.8 For computational necessity, the nume-
rical simulations must refer to discrete time and, accordingly,
occupation numbers, as any other observable, become a discrete
time stochastic process. 

The probability for a firm of being in micro-state 1 is η: p(1) = η,
hence p(0) = 1 – η. In order to model the probabilistic flow of firms

7. For example, in our simulations, we adopt the median within each group, as specified in
section 5.
8. On this topic other interesting references are Smith (1993) and Milakovic (2001). Besides
the principle of limiting density of discrete points, modelling discrete time observables with
continuous time tools is acceptable when the simulation time, say T, is long enough such that
the calendar can be partitioned with sufficiently dense adjacent reference intervals of time of
order o(T) w.r.t. the calendar. This conjecture is considered as appropriate due to consistency of
analytical trajectories from master equations to experimental simulations.
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from one microstate to another, transition probabilities and the
transition rates must be defined. The functional specification of
transition rates, i.e. transition probabilities per vanishing reference
unit of time, allows the occupation numbers to be modeled with
jump Markov processes.

The transition probability is the probability for a firm to switch
from one microstate to the other in a given instant. The transition
probability of moving from 0 to 1 is ζ while ι indicates the proba-
bility of the opposite transition. The transition rates quantify the
probability of observing a jump of one agent from one microstate
to another, conditional upon the initial microstate through time.
A transition rate is then given by the probability of a firm changing
state weighted by the probability of being in one particular starting
state. With reference to state 1, the transition rate for entry (from
state 0 into state 1) is indicated with λ while the one for exit (from
state 1 to state 0) is γ, defined as follows: 

λ = ζ(1 – η)
γ = ιη

(1)

This representation is phenomenological. Indeed, it allows
either for λ, γ and η to be constants or functionals of some state
variable.9 In case of only two micro-states, N being constant
through time, the attention is focused on only one occupation
number (for instance N1) to characterise the macro state of the
entire economy in a given instant, 1 ≤ Nk ≤ N: a realisation of the
stochastic process N1(t) on its support is denoted with N1(t) = Nk .

The transition rates determine the probability of observing a
certain occupation number at the aggregate level, i.e. a certain
macrostate of the system. Being N1(t) = Nk , within the length of a
vanishing reference unit of time Δ → 0+, the expected number of
transitions into the macrostate N1 is λ (N – Nk ) while the expected
number of transitions from macrostate N1 is γNk ; therefore, the
transition rates can be written as follows 

b(Nk ) = P (N1(t + Δ) = Nk +1 (t’) ⎜N1(t) = Nk (t)) = λ (N – Nk )
d(Nk ) = P (N1(t + Δ) = Nk –1 (t’) ⎜N1(t) = Nk (t)) = γ Nk

(2)

9. In Appendix A the stochastic model results are discussed for both cases.
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where b and d indicate, respectively, ''births'' (Nk → Nk +1) and
''deaths'' (Nk –1 ← Nk ) rate functions of the stochastic process and
t’ – t = Δ.

2. Firms

This section presents the assumptions for the microeconomic
units of the system. The approach is the one pioneered by GS, and
implemented in a heterogeneous agents framework by Delli Gatti
et al. (2005). If not otherwise specified, variables indicated by small
letters refer to single firms while symbols in capital letters stand for
aggregate quantities, within the state if followed by the supers-
cripts 0 or 1 and economywide otherwise. 

2.1. Financial fragility as a clustering device

We assume that financially constrained firms are subject to iid
shocks to revenue and, therefore, they run the risk of bankruptcy if
revenue fall short of pre-incurred costs. In this setting the optimal
scale of activity for the firm is constrained by its net worth due to
bankruptcy risk. The firm's probability of bankruptcy depends
upon its equity ratio, i.e. the ratio of net worth to assets.

In the present paper this approach has been followed in a
somewhat stylised way. The economy is populated by a fixed
number N of firms which agglomerate into clusters depending on
the level of individual equity ratio αi = ai / ki , i = 1, 2,... N, where ai
is net worth10 and ki total assets (physical capital). The threshold

 divides the populations of firms in two clusters: firms in state 0
(whose occupation number is N0), characterised by , are
financially robust while firms in state  (whose occupation number
is N1). characterised by , are financially fragile and exposed
to the risk of bankruptcy. Within each cluster, individual levels of
the equity ratio are approximated by their mean-field values α0

and α1 respectively.

In order to keep the number of firms N constant, each
bankrupted firm is replaced by a new one which, by assumption,
enters the system in state 1. The probability of being fragile is η

10. Equity or own capital are assumed synonyms of net worth.

α
αα ≥i

αα <i
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while μ denotes the probability of bankruptcy—i.e. of exiting from
the economy. Hence the rate of exit from the system is μη. Of
course, due to the one-to-one replacement assumption, μη repre-
sents also the rate of entry into the system.

2.2. Technology, costs and prices

Each firm employs physical capital as the only input in produc-
tion. Therefore, the production function of the i-th firm is: 

qi (t) = (2ki (t))1/2 (3)

and the capital requirement function is: 

ki (t) = 1/2 (qi (t)/2 (4)

 Firms can finance capital with previously retained profits (net
worth). When internal funds are not sufficient, firms resort to
loans: bi (t) = ki (t) – ai (t). Debt commitments in real terms are
rbi (t), where r is the real interest rate.11 For the sake of simplicity
the interest rate is constant and uniform across firms.

The firm has no market power (it is a price taker) but is opera-
ting in an uncertain environment. The price  Pi (t’) of the t’-th firm
at time t’—i.e. when the output is actually sold—is equal to the
average or market price P(t) at time t—i.e. when the output is
produced and ready for sale—subject to an idiosyncratic multipli-
cative shock : 

(6)

The random variable  s.t. u1 > u0 > 0 and
. Its support can be any positive neighbourhood of 1: in

this paper it has been chosen to set  within [u0 = 0.75;
u1 = 1.25].12

2.3. Profit, net worth and bankruptcy

The law of motion of net worth (in real terms) is: 

ai (t’) = ai (t) + πi (t’) (7)

11. By hypothesis, the return on own capital is equal to the interest rate r, so that the firm's
financing costs are:  

r(bi (t) + ai (t)) = rki (t) (5)

12. Due to the normalisation procedure detailed below, the choice of the support for  does
not affect probabilities.
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where πi (t’) is profit (in real terms): 

(8)

A firm goes bankrupt when ai (t’) reaches the zero threshold, i.e.
when 

πi (t’) = –ai (t) (9)

Substituting (8) into (9), and solving for (t’), the bankruptcy
threshold level of the shock is 

(10)

Notice that, by construction, the threshold level of the shock
occurring at t’ is a function of variables defined at time t’. If the
shock , then equity becomes negative (or zero) and the
firm goes bankrupt.

Since , and recalling (4), Equation (10) reads as:

(11)

The random variable  has support [0.75;1.25], therefore,
denoting with F the cdf of (t’), the probability of bankruptcy μi
for firm i is 

(12)

Every firm which goes bankrupt has to bear bankruptcy costs
Ci (t), non-linearly increasing with firm size, 

Ci (t) = c(qi (t))2      0 < c < 1 (13)

As discussed by Greenwald and Stiglitz (1990), bankruptcy costs
hold to the borrower. They are due to legal and administrative
costs incurred during the bankruptcy procedure and to the reputa-
tional costs for the managers of a firm which goes bankrupt. These
reputational costs are assumed to be increasing with the scale of
production.

2.4. Output

Following GS, we assume that at time t the firm (optimally)
decides the quantity to produce which will be sold at t’ in condi-
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tions of uncertainty concerning the sale price. Therefore, the
problem of the firm at t consists in maximising an objective func-
tion V which is equal to expected profits at t’, net of bankruptcy
costs, subject to the production function (3): 

(14)

(15)

Since  assuming that agents consider the expected
probability of bankruptcy at time t’ equal to the one at time t, the
problem above boils down to the following: 

(16)

(17)

where the time index has been removed to simplify notation.

Firms in state 0 know that their probability of bankruptcy is
. Hence, for financially robust firms, the problem is: 

(18)

(19)

which solves with q0 = r–1 being r given and q0 constant
through time. Financially fragile firms know that they run the risk
of bankruptcy. Due to the mean-field approximation, the probabi-
lity of bankruptcy for firms in state 1 is constant across agents.
Hence the optimisation problem becomes: 

(20)

(21)

and the solution is  

q1 = (r + 2cμ)–1 (22)

Note that μ is indeed defined at time t and time dependent so
that also  q1  is time dependent. Aggregate production is: 

Y = Y1 q1 + N0 q0  (23)
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where N1 and N0 are the previously introduced occupation
numbers. Plugging the above obtained results into this definition,
aggregate output can be expressed as 

(24)

From Equation (24), it is clear that business fluctuations are
driven by (i) the probability of bankruptcy μ and (ii) the dynamics
of the occupation numbers. The impact of financial fragility on the
aggregate may be better appreciated by reformulating Equation
(24) as follows 

(25)

where . 

While N and r are given, each factor in the product ξ V1 is defined
at time t and time dependent. N1 can be considered a macroeco-
nomic indicator of the financial fragility of the system; in (25) it is
weighted by ξ, which is a function of the probability μ. Therefore,
the dynamics of aggregate production appears to be determined by
the micro and macro level of financial distress of the economy.

2.5. Transition probabilities

The probability of bankruptcy μi can be expressed as 

(26)

By assumption, only firms in state 1 are exposed to the risk of
bankruptcy. It is expected firms lumped in cluster 1, the group of
financially fragile firms, have the following bankruptcy threshold: 

(27)

Hence 

According to equation (26), it is possible to quantify the equity
ratio threshold , which is the minimum level of the equity ratio
that ensures the firm's survival (i.e. μ = 0),13  and can be expressed
as
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(28)

Since q1 is time dependent, the threshold  also evolves over
time.

The transition probabilities ζ (i.e. the probability of moving
from 0 to 1) and ι (i.e. the probability of moving from 1to 0) can be
expressed as variables depending on the price shock , with
the appropriate critical values  and 

(29)

The explicit formulation for transition probabilities is therefore 

(30)

(31)

3. Dynamic analysis and solution

This section introduces the master equation, which is the
fundamental tool in the analytical solution process, and the main
result of its asymptotic solution.

13. It is now straightforward identifying an upper bound for the total credit demand

B = B0 + B1, where B0 and B1 are the total demands for each group of firms. Given the optimal

levels of capital for each cluster of firms, namely k1 and k0, the quantity of credit demanded

reaches its maximum when α1 and α0 reach their minimum. Note that α1 cannot go below r –
2.5/q1, at which value μ becomes equal 1. By definition, the minimum level for α0 is

. For these values it follows that: 

Consequently, the demand of credit must be smaller than or equal to: 

that cannot grow indefinitely since q0= 1/r and q1 < q0 as shown below.
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3.1. Aggregate dynamics

The solution of the model requires the specification of aggre-
gate output dynamics. As shown by equations (24) and (25),
aggregate output depends on a stochastic process, whose outcome
is given by the occupation numbers N0 and N1. It is assumed that
the stochastic process is a jump Markov process and its macro
dynamics is analytically explored by means of the master equa-
tion, i.e. a differential equation that describes the dynamics of the
probability distribution of a system of agents over its state space
through time. The master equation can be primarily specified as a
balance flow equation between probability inflows and outflows in
and from a generic macro-state.

The state variable N1 (t) = Nk  is the number of fragile firms,
those in state 1. The variation of probability in a vanishing refe-
rence unit of time is 

(32)

with boundary conditions: 

(33)

The variation of probability defined in the equation above is
defined as the sum of inflow-births from Nk –1 and inflow-deaths
from Nk +1 less outflows from Nk  due to births and deaths. Finally,
the boundary conditions ensure a consistent value for the probabi-
lity P(Nk ). Therefore, in order to identify the dynamics of firms
and production, Equation (32) must be solved.

3.2. Master equation's solution: stochastic dynamics of trend 
and fluctuations

As shown by (Gardiner, 1985; Risken, 1989), a direct solution of
the master equation is possible only under restrictive assumptions.
Inspired by van Kampen (2007), Aoki (1996, 2002) and Aoki and
Yoshikawa (2006) suggest a method to overcome this problem
which consists in splitting the control variable into the drift and
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diffusion components of the underlying process.14 The application
of this method appears of particular interest in this context as it
allows to analytically identify both the trend and the fluctuations
distribution of aggregate production. More precisely, the fraction
of firms in state 1 in a given instant is assumed to be determined by
its expected value (m), the drift, and an additive fluctuations
component of order  N1/2  around this value, that is the spread: 

(35)

Once the master equation has been modified accordingly, that
is in terms of s rather than of Nk , it can be solved using approxima-
tion methods. As shown in Appendix A, the asymptotically
approximated solution of the master equation is given by the
following system of coupled equations: 

(36)

(37)

where Q(s(t),t) = P(N1(t),t) is substituted into (32) to reformulate
the master equation as a function of the spread s. Equation (35) is
an ordinary differential equation which displays a logistic dyna-

14. The authors are aware that this method presents some drawbacks. First of all, van
Kampen's method develops a local approximation suitable to be applied only when the
underlying observable has a unimodal distribution, as the case under study in this paper.
Secondly, by allowing for a second order approximation it ends up with a Fokker-Planck
equation which solves into a Gaussian distribution for fluctuations: in the present paper it is
shown that this is not the distribution for the state variable but only for its spreading
fluctuations about the drift. Thirdly, when fluctuations are not of the order of the square root
of N, higher order moments might not vanish asymptotically and thus leading to non-
Gaussian distributions. This last aspect can be found when dealing with microscopic models
grounded on global interactions, which is not the case under study, or when mean-field
approached are not very suitable, see Castello et al. (2006) and Stauffer et al. (2006) on this
issue. Despite these limits, this method is adopted for different reasons. First of all it is
relatively easy to handle, as shown in the present paper. In particular, if one is interested in
macroscopic dynamics of a given quantity or an aggregation procedure, it does not require to
provide a solution to the master equation in terms of the probability distribution of the state
variable. The aim is to find the equations for the drift and spread only. Secondly, it allows for a
complete description of the stochastic aggregate dynamics in terms of transition rates and
related parameters, such as transition probabilities at micro-level, which can be analytically
obtained from the underlying agent based model. Third: if one is allowed to assume the van
Kampen's ansatz (34) and mean-field interaction, rather than global, is considered, then the
needed condition for a suitable second order approximation are met. The method is here
developed following Landini and Uberti (2008) and Di Guilmi et al. (2011).
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mics for the drifting component. Equation (36) is a second order
partial differential equation, known as the Fokker-Planck equation,
that drives the density of the spreading component s. The dyna-
mics converge to the steady state values: setting the l.h.s. of (35) to
0, the stable steady-state value for m is 

(37)

Then, by integration of (35) with an initial condition
m(0) = m0 we get: 

(38)

This equation describes the dynamics of the fraction m of firms
occupying state 1 at each point in time. It is fully dependent on
transition rates. The stationary solution of the equation for the
spread component (see Appendix B) yields the distribution func-
tion Q for the spread s, thus determining the probability
distribution of fluctuations: 

(39)

which looks like a Gaussian density, dependent only on transition
probabilities. Given the relationship among m and total produc-
tion, the dynamics of our economy is now fully described by
having at hands a differential equation for output dynamics, its
equilibrium value, and a probability function for business fluctua-
tions around the trend.

4. Interaction and output dynamics: the stochastic financial 
contagion

This section shows how the transition rates provide a functional
representation of the interaction of firms within each cluster and
of the feedback effects between the macro and the micro-level of
our stylised economy. The first subsection proposes and endoge-
nous formulation for the probability η, which makes possible a re-
interpretation of the formula for aggregate output and the transi-
tion rates, as illustrated in the second subsection.
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4.1. Stationary points and equilibrium probability

An important result derived by the asymptotic solution of the
master equation concerns the theoretical probability η of being in
state 1. In particular it is possible to identify a functional form that
quantifies the impact of indirect interaction among firms. By defi-
nition, the steady-state condition implies that the probability of
in-flows is equal to the probability of out-flows for all possible
states. Analytically it means a null value for the r.h.s. of the master
equation. This condition is defined as detailed balance.15 Provided
that detailed balance holds for each pair of macro-states, Appendix
C shows that the stationary probability for a given macro state
Pe (Nk ) is 

(40)

The probability Pe (Nk ) can be also expressed in Gibbs form,16

and a Gibbs functional form for the probability η  is 

(41)

where: 

(41’)

The symbol  stands for the average production Y(t) / N. The
probability of being in state 1 in a given instant depends on three
factors: the number of firms already occupying the state, N1; the
parameter β, which measures the impact on total output of the
relative financial distress of firms; the function g(N1), which quan-
tifies the average difference in the optimal levels of production.
The circular feedback effects are displayed by Equation (41): the
macro-to-micro effect captures the link of the behaviour of a firm

15. It is worth stressing that the detailed balance does not imply that agents do not switch
between the micro-states, but that inflows and outflows for each micro-state balance out.
16. The equivalence is demonstrated by the Hammersley and Clifford theorem which states
that for each Markov random field there exists one and one only Gibbs random field (Clifford,
1990).
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to the state of the economy; the bottom-up or micro-to-macro
effect, on the other hand, determines the aggregate performance
by the number of firms with lower output and by the relative diffe-
rence in optimal outputs, captured by g(N1) and β. Therefore, by
means of equation (41), the whole dynamics of the system can be
interpreted as the result of indirect interaction among firms and of
the feedback effects between macro, meso and micro level.

4.2. Output dynamics

Making use of equations (25) and (37), the steady-state value of
aggregate production, Ye, can be expressed as: 

(42)

Equation (42) highlights two factors that influence production
dynamics: the difference between firms' optimal production levels
and the transition rates. The first component is determined by the
exogenous parameter c, that reflects institutional conditions, and
by the probability of bankruptcy μ, that is the result of the relative
financial condition of financially distressed firms, being a function
of the difference between their equity ratio α1 and the ''safety''
level α.

The transition rates component is the result of a micro factor
(the relative financial conditions of the two types of firms) and of a
macro factor (the general financial situation of the system,
revealed by the number of firms in each state), as shown by equa-
tions (1) and (30). The formulation of λ and γ under detailed
balance condition helps in clarifying further the point. Substitu-
ting equations (30) and (41) in equations (1), we obtain: 

(43)

(44)

The micro factor is quantified by  and , that, as shown in
equations (29), reflect the difference between  and the mean-
field variables α1 and α0. This effect is amplified by the macro
factor  that, in turn, is dependent on the occupation numbers and
on the relative difference in optimal levels of production. The
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joint effect of these variables gives rise to a mechanism that can be
defined as stochastic financial contagion, given that a worsening
in micro financial conditions raises both the probability of
bankruptcy and the probability of entering state 1. 

The solution reveals that the dynamics of the economy is
dependent on the distribution of agents and on its evolution.
Given the inherent uncertainty of these dynamics, all the func-
tional relationship are expressed as probability functions.
Therefore, the dynamics of the system appears to be fully
stochastic, and the steady-state level of production cannot be
considered as a natural equilibrium.

5. Simulations
In order to visualize the actual dynamics of the system and

check the reliability of the stochastic approximation, Monte Carlo
simulations have been performed. The agent based model have
been simulated with fully heterogeneous firms according to the
hypothesis detailed in section 2. Then mean-field variables α1 and
α0 as the medians of the equity ratios within each cluster have
been calculated. These values are the input of the stochastic dyna-
mics procedure, performed according to the structure of section 1.
The simulation has been repeated 1000 times, drawing a new set of
random numbers for each replication. The number of firms is
N = 300 and the parameter c is set equal to 1.

To appreciate the volatility endogenously generated by the
system, figure 1 displays the symmetric dynamics of low-equity
firms and aggregate production for a single replication. The
convergent evolution of n1 is driven by equation (38) with fluctua-
tions around the trend distributed according to (39). Its dynamics
fully explains the growth of aggregate production and the business
fluctuations. The higher volatility in the series of output is due to
the shocks in price.

Figure 2 compares the agent based results with its stochastic
approximation in the initial stages of the adjustment process.
Agent based trend dynamics are well mimicked by the stochastic
approximation. The fluctuations generated by the two procedures
cannot match, as in the latter they are the outcome of a random
variable. Nevertheless, the amplitudes of volatility are comparable.
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The result is satisfactory as the average variance of the time series is
.0068 for agent based and .0063 for the stochastic approximation.

Figure 1. Trends and fluctuations for value of aggregate production (left scale) 
and n1 (right scale). Single replication 

Figure 2. Dynamics for n1 for agent based simulation (red dotted line) 
and stochastic approximation (black dashed line for trend and continuous blue line 

for fluctuations). Single replication
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The dynamics of the two series obtained by the Monte Carlo
simulation over 1000 replications are displayed in figure 3. They
overlap for almost all the periods, although the adjustment process
to the steady state is shorter for the stochastic approximation. Their
significant correlation is .96. Thus, the stochastic dynamics proves
reliable for an analytical representation of more complex and diver-
sified structure. The simplification to the two states approximation
does not seem to reduce the accuracy of the solution.

Figure 3. Dynamics for n1 for agent based simulation (red dotted line) 
and stochastic approximation (black continuous line). Monte Carlo simulation 

with 1000 replications

Figure 4. Relationship between β  and n1
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The variable β, which enters the definition of transition rates, is
inversely related to the number of financially fragile firms, as
shown by figure 4. Hence, it represents an inverse index of the
systemic financial fragility. According to Equation (42), the aggre-
gate output is expected to be higher for lower level of N1 and, thus,
higher β. This result is confirmed by the simulation and illustrated
in figure 5. The same graph reveals that the performance of the
economy is also dependent on the shape of the distribution of the
net worth, as lower levels of standard deviation for a appear to be
associated to a larger aggregate production.

6.   Concluding remarks

This work proposes a solution to the problem of the aggregation
of heterogeneous agents in a dynamical context by applying a
method which analytically identifies the components of macroe-
conomic dynamics, namely, trend and fluctuations. It is worth
stressing that the long run steady-state of production cannot
properly be defined as natural equilibrium. From the methodolo-
gical point of view, the main contribution of the present work is
the identification of a differential equation for trend and a proba-
bility distribution function for the fluctuations of the aggregate
production by means of the asymptotic solution of the master
equation. All the variables that appear in these two formulations

Figure 5. Countour plot of the aggregate output as a function of the standard 
deviation of net worth distribution and β
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are endogenous and provide an analytical representation of the
interaction among agents and the feedback effects that arise
among the different levels of aggregation within the system. In
particular, both the probability for a firm to reduce its production
as a consequence of the risk of failure and the actual probability of
bankruptcy are dependent on the financial distress of the other
firms in the system, measured by the number of firms with low
equity ratio and by the mean-field approximations of the equity
ratios. Aggregate production is itself dependent on the ratio among
debt and equities of each firm, and this gives rise to feedback
effects between micro and macro levels of the system. The overall
effect can be defined as stochastic financial contagion. 

 This methodology appears as particularly suitable for models
where the micro financial variables have a relevant impact on the
macroeconomy. In such a way, the modelling of the links among
financial fragility, business cycles and growth dynamics can be
consistently microfounded, taking into account the heterogeneity
of firms' financial variables and the interaction among agents and
between agents and the macro level of the system. However, the
actual range of application of this body of tools extends to all the
contexts in which the heterogeneity of agents and their interac-
tion cannot be neglected or reduced in order to represent, e. g., the
efficacy of an economic policy measure or the transmission mecha-
nism of a shock. All in all, the whole of macroeconomics.

The limitation to the heterogeneity does not seem to impact on
the performance of the model that proves capable to replicate the
behaviour of an analogous agent based model, with no restrictions
on the heterogeneity of firms.
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Appendix A

This appendix develops the method involved to reach a mean-
filed system of coupled equations for the drift and the spread of the
state variable in the master Equation (32). According to (34) for a
fixed  it follows that 

(A.1)

Accordingly, the master equation (ME) (32) can be rewritten a
function of the state variable s. The fact that Nk is fixed does not
mean that it is constant but just that we focus out attention on it as
a specific realization of N1(t); Accordingly, from (A.1) it follows that

(A.2)

hence the l.h.s. of (32) reads as 

(A.3)

being P(N1(t) = Nk ) = Q(s(t)). In order to find a suitable expression
for the r.h.s. of (32), transition rates are written as follows 

(A.4)

(A.5)

where θ = 0 means outflow and θ = 1 inflow, consistently with the
phenomenological ME (32).

The lead (+) and lag (–) operators are defined as

(A.6)
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 (A.8)

Hence it follows that 

(A.9)

(A.10)

 Therefore, by using (A.9) and (A.10) into the r.h.s. of (32) it
follows that 

(A.11)

which is the ME to be solved. The solution is approximated as (A.6)
involves Taylor's polynomials to approximate probability flows
about Nk.

Rescaling time as , with a second order approxi-
mation it follows 

(A.12)

where, for notation convenience, t stands for r. Expression (A.12) is
a Fokker-Planck equation, equivalent to the approximation one
gets with the Kramers-Moyal expansion if Pawulas' theorem does
not allow for a closed form solution (see Risken, 1989; Gardiner,
1985; Di Guilmi et al., 2011), and coefficients are given by 

(A.13)

Case 1. If transition rates in (2) have birth (λ) and death (γ) rates
constant through time, by substituting (A.13) into (A.12) accor-
ding to (A.4) and (A.5) with θ = 0, after having computed
derivatives and collected terms with powers of N, it happens that
as  N−p/2 → 0 as N → ∞ ∀p≥ 2 hence, by using the polynomial iden-
tity principle, it can be found that 
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The (A.14–i) in the mean-field system gives the so called
macroscopic equation: its solution provides the most probable drif-
ting path trajectory for . The (A.14–ii) is the Fokker-
Planck equation for the probability distribution of spreading fluc-
tuations about the drift. Both admit a closed form solution
allowing for a solution of the ME (A.11) equivalent to (32).

Case 2. In the case of this model, the transition rates have birth
and death rates which change over time. Therefore, the following
externality functions are introduced in order to model their
evolution

(A.15)

(A.16)

Therefore, since N1(t) = Nk , (A.15) and (A.16) can be substituted
into (A.4) and (A.5) with θ = 0 to get an expression for (A.13) with
the modification of transition rates just highlighted. Subse-
quently, after the derivatives have been computed, the terms with
the same order of powers for N are collected such that N−p/2 → 0 as
N→ ∞ ∀p≥ 2. By applying the polynomial identity principle it
then follows that 

(A.17)

where the macroscopic equation (A.17–i) gives a logistic dynamics.
The non linearity is due to the rate functions (A.15) and (A.16)
which account for external field effects on transition rates (A.4)
and (A.5).

The macroscopic equation (A.17–i) is an ODE, hence with an
initial condition  m(0) = m0 = N1(0)=N  it allows for a logistic dyna-
mics with multiple equilibria: . The stable equilibrium
is  and the general solution is 
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which describes the evolution of  as the expected,
i.e. most probable, drifting path.   

Appendix B

 Herein a solution for the Fokker-Planck equation (A.17–ii) is
found in terms of Q(s). Using  to indicate the stationary proba-
bility for , by setting  it follows that 

By direct integration it gives

(B.1)

By substituting for  m* =  ζ  / ζ + ι) it can be found that

(B.2)

being  a normalization constant. 

Since the variance is a function of ζ and ι, which are time depen-
dent, this representation allows for stochastic determinism. That is,
the stationary solution for the distribution of spreading fluctua-
tions still performs some vibrating volatility due to the exchange of
agents between the two states. These exchanges let the volumes
almost constant on expectation through time when approaching
the stable equilibrium, but fluctuations depend on who is jumping
because agents jump from one state to another carrying their own
characteristics and endowments. Unfortunately these individual
jumps are unobservable, and agents are indistinguishable, from a
macroscopic point of view. Nevertheless, it known it happens and
this let macroscopic observables to vibrate about some equilibrium
path. On the other hand, equilibrium itself is a state of nature for
the system as a whole, it is not a property of its elementary consti-
tuents; equilibrium is a probability distribution for agents over a
space of states and not a point of balance of two forces.
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Appendix C

The basic steps for deriving of the steady state probability are
here sketched, referring the interested reader to the cited refe-
rences. Stationary probability can be obtained by applying Brook's
lemma (Brook, 1964) which defines local characteristic of conti-
nuous Markov chains. Hammersley and Clifford demonstrate that,
under opportune conditions, for each Markov random field there
is one and only one Gibbs random field, and define the functional
form for the conjunct probability structure once the neighbou-
rhood relations have been identified (Clifford, 1990). The expected
stationary probability (40) of the Markovian process for N1, when
detailed balance holds, can be expressed by: 

(C.1)

where U(x) is the Gibbs potential and can be defined as a func-
tional of the local dynamic characteristics of the state variable Nk .
In particular: 

(C.2)

The above formulation leads (Aoki, 2002) to an explicit formu-
lation for the probability η as a function of the state variable N1: 

(C.3)

where g(N1) is a function that evaluates the relative difference in
the outcome as a function of N1. β may be interpreted as an inverse
measure of the system uncertainty. The uncertainty among the
different possible configurations in a stochastic system can be
evaluated through a statistical entropy measure (Balian, 1991). The
quantification of the parameter β can be obtained by maximising
the statistical entropy of the system (Jaynes, 1957). In the present
case the problem is configured as follows: 

(C.4)
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The first of the two constraints ensures the normalization of the
probability function. The second ensures that all the wealth in the
system is generated by firms in the two kind of states. The solution
of the maximisation problem (for details see Di Guilmi, 2008)
yields 

(C.5)

Large values of β associated with positive values of g(N1) cause
η(N1) to be larger than 1 –η(N1), making the transition from state 0
to state 1 more likely to occur than the opposite one. In binary
models and for great N, the equation of the potential is: 

where  is the Shannon entropy with  . In order
to find the stationary points of probability dynamics we need to
individuate its peak (if it exists). β is an inverse multiplicative
factor for entropy: a relative high value of β means that the uncer-
tainty in the system is low, with few firms exposed at bankruptcy
risk. For values of β around 0, and a more relevant volatility in the
system, in order to find the peak of probability dynamics we need
to find the local minimum of the potential. Aoki (2002) shows that
the points in which the potential is minimized are also the critical
point of the aggregate dynamics of Pe (Nk ). Deriving the potential
with respect to  N1 and then setting U’ = 0: 

(C.6)

and using equation (C.5),an explicit formulation for g(N1) is found
in stationary conditions: 

that quantifies the mean difference (for states) of the output. 
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